
ABSTRACT

More and more consumer and commercial products contain at least one microprocessor. While efforts to develop “device 

bus“ standards to integrate the automation of these devices have increased the potential for large-scale interoperability, 

this potential will remain largely unfulfilled for some time. Interstacks is a modular hardware system that empowers even 

non-technical users to integrate bits of specialized hardware in order to automate and control the flow of information 

among electronic products. It reinterprets the notions of component architecture and end-user scripting in the domain of 

hardware devices. 

Keywords

Modular, End-user Programming, Home Automation, Process Control, Scripting

Interstacks
End-User “Scripting” for Hardware

A M paper

MAYA Design, Inc.
2730 Sidney Street
Pittsburgh, PA 15203

T: 412-488-2900
F: 412-488-2940
maya@maya.com
www.maya.com

Peter Lucas
Founder, Principal, Board Chair
MAYA Design, Inc.

Published August 1999



2 ©2009 MAYA Design, Inc.

Interstacks: End-User “Scripting“ for Hardware

INTRODUCTION

An increasingly high percentage of consumer and commercial 

products contain at least some computing capabilities. Although 

the use of embedded processors is motivated primarily by lower 

costs and improved functionality, a side effect of this trend is 

that many devices in the environment have at least some ability 

to be controlled externally (e.g., infrared remote controllers for 

televisions), thus making automation and integration across 

devices possible. 

Accelerating this trend has been the development of a large 

number of “device bus” standards aimed at integrated automation 

among separately manufactured devices. There are literally 

dozens of such proposals, involving such diverse media as 

infrared, RF, power line signaling, fiber optics, and dedicated 

copper connections.

The result has been a great increase in the potential for 

cross-device integration. The large number of competing 

communications options, however, has led to a tower of 

babble that threatens to leave the potential for large-scale 

interoperability unfulfilled for a long time to come.

In the software industry, a similar situation led to the 

introduction of so-called “component architectures” as a way 

to support interoperability among technologies in the face of 

heterogeneous implementation strategies. Standard software 

interfaces and message-passing schemes allow developers 

with little understanding of the internals of each module to 

assemble diverse components into end applications. Moreover, 

component architectures go hand-in- hand with end-user scripting 

environments, such as HyperCard and Visual Basic, which are 

the “glue” for connecting components together in the field by so-

called “power users” who have the conceptual knowledge, but not 

the detailed technical skills to do low-level programming.

INTERSTACKS

The Interstacks project began with the question, “How could 

the notions of component architectures and enduser scripting 

be reinterpreted in the domain of hardware devices?” Just as 

HyperCard lets power users string together components without 

having to worry about type coercion and hash tables, how could 

we empower such users to string together bits of specialized 

hardware without having to worry about fanouts and despiking 

capacitors?

Interstacks is composed of a series of modules that can be 

plugged together in any combination and number. Plugged 

directly into each other, rather than into a common backplane, 

the modules form a bus that can pass data and multimedia 

information among the modules in arbitrary combinations. Such 

a collection of interconnected modules is known as a “stack.”

Interstacks extends the notion of traditional control and 

instrument buses (e.g., the IEEE 488.2 GPIB standard [1]) by 

adding extensible multimedia support, and by associating the 

uniform bus protocol with a standardized self-stacking package 

that is both inexpensive to manufacture and easy to use. Modules 

can be used in many different configurations, ranging from only 

one or two sitting on a desktop or attached to a controlling 

device, up to a large number mounted on a wall or an equipment 

rack. The logical relationships among modules are determined via 

a separate direct-manipulation visual programming application 

that exposes the inputs and outputs of each module to the user. 

This interface supports module interconnection via the dragging 

of virtual “wires” from module to module.

Figure 1: Interstacks Modules

Modules intercommunicate via a simple serial token bus 

optimized for low-bandwidth control applications and very low 

cost. There are also provisions for optional specialized buses 

such as multichannel audio and video, Universal Serial Bus 

connections, etc.

From a functional perspective, modules can be divided into 

several categories: 

Master Module. This module is the “stack manager,” 

coordinating the intercommunication of all the other modules in 

a stack and optionally providing a communications channel to an 

external control computer.

I/O Modules. These modules implement the physical and 

logical layers necessary to support communications with external 



Interstacks: End-User “Scripting“ for Hardware

©2009 MAYA Design, Inc.3

devices. Examples might include an RS-232 module, an X-10 

lighting-control module, an IR remote control module, and a 

telephone interface.

Control Modules. These are “programmable” modules that send 

data to other modules, receive data from them, and perform local 

computations. Examples might include a simple programmable 

controller, or a module implementing the Java Virtual Machine.

Memory Modules. These can be used as auxiliary storage for 

other modules in a stack, or can come preloaded with useful 

information such as a list of telephone numbers or a dictionary. In 

the Interstacks architecture, only memory modules are permitted 

to persistently store state.

Human-Interface Modules. These accept messages containing 

information to be presented to users and/or generate messages 

in response to user actions. Examples might include a keyboard 

module, a touch screen module, and a VGA flat-panel display 

module.

SCRIPTING INTERFACE

The “scripting” interface to Interstacks is implemented as a PC 

application that implements a highly intuitive direct manipulation 

environment that combines a visual programming scheme with a 

simple, declarative scripting language. This visual programming 

approach is in the tradition of such visual scripting approaches as 

LabVIEW [3] and Java Studio [2]. We can plug together a set of 

Interstacks modules, including a base module connected to a PC, 

and use this development environment to “script” complex sets 

of behaviors among different technologies (e.g., home security, 

home theater, and telephony).

Figure 2: Scripting Interface for Interstacks

As soon as we apply power, the PC will present a visual 

representation of the stack in the form of a set of “proxy 

modules”—directly manipulable screen representations of each 

module, including its logical interface (i.e., the kinds of messages 

that the module can send or receive).

We can establish message paths from module to module simply 

by dragging virtual “wires” among them. For example, we can 

“wire” an X-10 lighting module to an IR remote control module 

that will permit us to control the light with the TV remote control. 

Arithmetic and logical operations, future event scheduling, and 

other semantically complex processes can be implemented by 

using simple “script” modules, which are logically identical to 

proxy modules, but are implemented in software and have no 

physical module behind them.

ACKNOWLEDGEMENTS

Portions of this work were funded by DARPA contract #F30602-

97-C-0262.

The ideas presented here have emerged from long collaboration 

with my colleagues at MAYA, and with our clients. I must 

particularly thank Jeff Senn, whose contributions to these ideas 

cannot be fully separated from my own, and Susan Salis, for 

whose editorial assistance my readers should feel grateful.

REFERENCES

IEEE 488.2-1992. IEEE Standard Digital Interface for 1. 
Programmable Instrumentation. Institute of Electrical and 

Electronic Engineers, 1992.

Java Studio. Sun Microsystems Inc. http://www.sun.com/2. 
studio/.

Johnson, Gary W. LabVIEW Graphical Programming. McGraw-3. 
Hill, New York, 1997.


