
Visage: A User Interface Environment for Exploring Information

Steven F. Roth, Peter Lucas, Jeffrey A. Senn, Cristina C. Gomberg,
Michael B. Burks, Philip J. Stroffolino, John A. Kolojejchick & Carolyn Dunmire1

MAYA Design Group, Inc.
2100 Wharton Street
Pittsburgh, PA 15203

412-488-2900
lucas@maya.com

http://www.maya.com

Carnegie Mellon University
School of Computer Science

Pittsburgh, PA 15213
412-268-7690

steven.roth@cs.cmu.edu
http://www.cs.cmu.edu/~sage

Army Research Lab
Aberdeen Proving Ground

MD 21005
410-278-5937

cdunmire@arl.mil

1Roth & Kolojejchick are affiliated with Carnegie Mellon, Dunmire with ARL, and the others with MAYA Design Group.

Abstract

Visage is a prototype user interface environment for
exploring and analyzing information. It represents an
approach to coordinating multiple visualizations, analysis
and presentation tools in data-intensive domains. Visage is
based on an Information-centric approach to user interface
design which strives to eliminate impediments to direct
user access to information objects across applications and
visualizations. Visage consists of a set of data manipulation
operations, an intelligent system for generating a wide
variety of data visualizations (SAGE) and a briefing tool
that supports the conversion of visual displays used during
exploration into interactive presentation slides. This paper
presents the user interface components and styles of
interaction central to Visage’s information-centric
approach.

Keywords: Visualization, exploratory data analysis,
graphics, user interface environment, human-computer
interaction

1. Introduction

There has been a great deal of research recently on
techniques for supporting the exploration and manipulation
of information. This research has produced new ways to
visualize information, new techniques for interacting with
visualizations to manipulate information, and new tools for
supporting the creation of visualizations. Much of this
work has been quite general in producing visualization
techniques applicable to diverse data (e.g. quantitative,
symbolic/relational, geographic, temporal) and interaction
techniques that can be combined and applied across many
different styles of visualization (e.g. 1,4,6,7,8,9,10,11,12).

This work has begun to produce several general purpose
analysis tools, each with its own strengths. The Table Lens
[11], for example, is a dynamic spreadsheet environment for
exploring large, multidimensional data sets with techniques

for focusing attention on subsets while viewing the rest as
context. Its strengths include techniques for rapidly creating
and viewing the relations among new data attributes.
Another evolving analysis package is IVEE [2], which
provides the ability to rapidly create multiple dynamic query
sliders to filter data. A third example is the SAGE system
[12], whose central feature is rapid design of visualizations
that integrate multiple attributes.

Taken together, these systems illustrate a fundamental
user interface design question: how can we use the
complementary features of different visualization and
analysis tools in a coordinated way. Even for just these
three systems, how can we create new attributes in one,
filter the same data with another, and visualize the resulting
subsets with a third? More generally, what user interface
approach would enable people to easily move and combine
interesting subsets of information across the isolating
boundaries imposed by different applications?

Of course, the coordination problem is not unique to
these tools. Most people who work with large amounts of
information also use custom applications. For example, in
domains like transportation scheduling and tracking (which
we have been using as a test case), analysts use one system
to generate and display airplane schedules, another for
tracking the location of cargo in transit, and a third for
managing warehouse inventory and requisition handling.
The interfaces to these applications each have useful
visualizations but no mechanism to explore relationships
among the different data they portray. For example, there is
no way to explore the relations among the locations where
supplies are stored, the people who order them, and when
they are scheduled to be shipped by air.

These problems suggest the need for a user interface
environment for people who work in information-intensive
domains - an electronic workspace for people who explore
and analyze large amounts of data daily. Such a workspace
must provide several key capabilities.

 First, it requires user interface techniques that enable
information to be selected and combined from multiple
application interfaces, visualizations, and analysis tools.

Second, it must enable rapid generation of
visualizations to integrate information from these diverse
sources. The value of integrative visualizations is obvious.
However, because the combinations of information that
people will create are often unpredictable, it is not possible
for software developers to create every visualization in
advance. Therefore, an effective workspace must provide
tools by which users can create new visualizations as needed
without great effort or skill.

Third, consistent user interface techniques are needed
with which people can filter, control level of detail,
navigate, and create new information wherever it is
displayed.

Fourth, an effective environment should make it easy
for people to share and communicate their results in
collaborative settings, where they must iterate between
analysis and presentation activities frequently.

In order to address these needs, we are developing an
approach within a software environment called Visage. Our
goal is to incorporate basic information exploration
components within a new user interface paradigm. This
paper describes several key elements of Visage.

1. A consistent information-centric user
interface paradigm. As the name implies, this paradigm
strives to provide users with greater direct contact with
objects that represent information they need to view and
manipulate to perform their work. In this paradigm,
information is represented as first-class objects that can
reside and be manipulated in visualizations, application user
interfaces, on desktops, in briefing materials, or anywhere
else people elect to place it. It is ultimately concerned with
usability (i.e. it is user-centered), in that it seeks to reduce
the complexity and restrictions created when people cannot
access information directly and instead must face the
mechanics of running and coordinating applications and
working with file system metaphors.

2. Dynamic visualization generation. In order
to provide integrative views of information, we are
incorporating work on SAGE, a knowledge-based automatic
graphic design tool [12]. This approach provides rapid
generation of visualizations customized to users' immediate
data exploration tasks.

3. Interactive information manipulation.
These include tools for:

• finding and interactively partitioning, filtering, and
selectively combining subsets of data on which to focus,

• controlling the level of detail with which this
information is viewed using drill-down and roll-up
techniques (drill-down commonly refers to the process of
segmenting or breaking down aggregated data along
different dimensions to create a larger number of smaller
aggregates; roll-up commonly refers to the process of
merging detailed data into aggregates that summarize their
attributes), and

• assembling, laying out, and interactively presenting
information to others.

2. An Example

In order to convey Visage’s basic styles of interaction, it
is useful to consider a detailed example. The example is
based on one of the applications of this approach that we
are pursuing to facilitate next generation logistics tracking
and planning systems. These government systems are being
developed to access and analyze information about the
location, quantities, status, transportation, distribution,
consumption and other properties of equipment and supplies
and the people who need them worldwide.

Figures 1 and 2 contain an outliner style of table that is
one of many displays we created in the Visage environment.
It is one way to provide a hierarchical perspective on tabular
data and is useful for this example because it illustrates
drill-down and roll-up capabilities in a familiar way. The
same techniques are applicable to other approaches to
displaying hierarchical data (e.g. [8, 9]).

Figure 1: Drilling down organizationally

Starting from any point in an object-oriented database
for a logistics exercise, users are offered a menu of
alternative dimensions along which they may drill down. In
Figure 1, a user has already drilled down from an object
representing the Army Corp to its five subordinate units
and has selected one division (53rd Division) to drill down

further organizationally. This occurs by selecting the
subordinate unit relation from the pop-up menu that is
dynamically attached to the 53rd. The result is the more
detailed organizational breakdown (the highlighted text) in
Figure 2 (also see blue highlighted text in color plate) .

This drill-down process could also occur across different
relations or links from any of these objects. For example, it
is possible to drill-down from an object representing an
Army unit to the equipment it possesses (e.g. trucks,
generators, stoves). One could then drill-down further from
one type of equipment to the parts or supplies it requires
(e.g. from trucks to truck parts) and then drill-down from
one supply-type to all the warehouses that have it in stock.
This is a process of turning a network or web of database
objects into a convenient hierarchical breakdown for
analysis purposes.

On the right side of the outliner in Figure 1, users can
select any attribute of the objects in the hierarchy that they
want to have displayed, like the weight of supplies a unit
requires, its echelon, the number of people in the unit, etc.
These attributes can be taken directly from the database or
dynamically created as derived attributes using a scripting
language. In either case, as the hierarchy is expanded, the
values for these attributes are added with it. The dynamic
drill-down and expression of attribute values is a
fundamental operation in Visage that can occur in every
display. In the example, a user has drilled-down just
organizationally to a group of Army units of interest.

An important operation in our implementation of the
information-centric interface approach is the ability to drag
objects representing information among visualizations and
application interfaces throughout the Visage environment.
For example, in order to display graphically some of the
attributes of the subordinate units of the 53rd Division, one
simply drags a copy of the unit names from the outliner to
an empty bar chart display in Figure 2 (the moved units are
indicated by the translucent text).

Figure 2: Dragging objects across displays

In this case, a bar chart shows the weight of supplies
that these units require as bars in Figure 3 (some are already
selected for subsequent copying and dragging to a map and
appear darker in Figure 3 and red in the color plate). Each
display shows some attributes by default or users can select
other attributes from a menu attached to the chart. The
menu of attributes is constructed dynamically from the
objects that are dropped into the display (i.e. the attributes
of Army units in the example). Visualizing unit supply
weights in a bar chart makes it easy to select those needing
the most supplies - those with the longest bars. These are
painted by the user and appear dark gray in Figure 3.

It’s now possible to check the locations of just these
units on a map, perhaps to determine the locations where
supply warehouses should be established. Units are
transferred to a mapping application with a similar drag and
drop operation suggested by the translucent bars in Figure
3.

Figure 3: Dragging units with the largest
quantities (dark bars) from a chart to a map.

The map application is a product called MATT which
was developed independently of Visage by Bolt, Beranek and
Newman and coordinated using its program interface. This
is an example of one of the primary goals of this work, to
explore how to cement together separately developed
analysis tools into what the user will experience as an
integrated work environment. By default, a map display
shows the longitude and latitude attributes of objects and
uses military symbols associated with unique identifiers of
units and other objects.

The map display can be used to further focus attention,
for example, by painting yellow (light gray in Figure 4) the
subset of units that occur close together in the center of the
map (perhaps to identify a region where large quantities of
supplies will be needed). Notice that painting [4,6,8,10] an
object in one display causes it to be similarly colored in all
other displays. Together, the three displays in Figure 4
show who the selected units are, how many supplies they
need, and where they are located. In the color plate, the

blue, red, and yellow units are all subordinates of the 53rd
Division. The red and yellow ones need the most supplies.
Yellow ones are Northern units of special interest to a user.

Finally, this small subset of units can be rolled-up (i.e.
aggregated) into a single object and named by a user, in this
case, “North High Supply Units." It appears in the bottom
of the outliner, and its attributes are the appropriate totals
for the units it aggregates. The new aggregate can be treated
as a single object for new drill-down operations. For
example, it is possible to drill-down along a new dimension
to the supply types needed by the aggregated units.

Figure 4: Dragging copies of objects back to
the outliner and composing them into new

data aggregates

Notice that this approach enables users to compose a
complex query through a series of drill-down, drag, paint
and roll-up operations. The last aggregate represents “units
of the 53rd Division that need the ‘most’ supplies and are
located in a small region to the north”. No abstract query
needed to be constructed.

In summary, this example illustrates the most
important aspect of Visage’s information-centric approach:
operations are directly applied to graphical objects
representing information and not through the mechanics of
running applications. For example, bar chart and mapping
programs are invoked by moving graphical objects to
displays rather than by running programs and performing
export/import procedures (the typical data sharing
mechanisms used in spreadsheets and other tools). Also,
painting operations are applied directly to objects that are
coordinated in multiple displays via a common underlying
database. Similarly, drill-down and roll-up operations are
performed directly in any display because of a shared object
representation. Later, we will describe how these display
themselves can be similarly copied and dragged into
presentation slides for briefings.

Finally, what is not illustrated here is the role of
dynamic graphic design for creating composite
visualizations dynamically that integrate multiple types of
information. The outliner and bar chart displays in this
example were created using a scripting language which will
be described in detail later.

3. Background: Towards an Information
Centric User Interface Architecture

The VISAGE user interface paradigm takes an
aggressively information-centric approach to the
presentation of information to the user. The information-
centric approach may be thought of as the next logical step
along the path from application-centric architectures to the
modern document-centric approach. The distinctions among
the three approaches hinges on differences in the "basic
currency" through which the users interact with the system.

In application-centric architectures, the basic currency is
the file. The file system is completely exposed to the user
and a somewhat detailed understanding of its workings is a
prerequisite to the productive use of the system. Moreover,
although files in the file system are the basic unit of
information, the files themselves are of little use to the
user. To access the information in their files, users must
rely on "applications" to fetch and display the information
from the files on their behalf. In this regard, applications
are like remote manipulator arms in nuclear power plants--
users are not allowed to "touch" their data, except indirectly
via various special-purpose tools. Each application has it's
own user interface which defines what kinds of files people
can manipulate and what they can do with them.

With the introduction of graphical user interfaces and the
desktop metaphor, files became concrete visual objects,
directly manipulable by the user, storable on the desktop or
in folders, and--to a limited extent--arrangeable by users and
software in semantically meaningful ways. But the contents
of those files were still out of direct reach of the user.

The advent of document-centric interface paradigms has
introduced many positive changes into this story. In this
world, the basic currency is no longer the file but rather the
document--an entity with some potential meaning in the
user's world-outside-the-computer. The role of the
application is subordinated (and perhaps ultimately
eliminated) in favor of component architectures whose
interactions with the user are focused on direct
manipulations of documents. Documents may be kept on
the desktop in addition to files and may be directly activated
and manipulated via drag-and-drop operations. Documents
may serve as containers for other documents, enabling
natural modes of grouping and attaching information
together in meaningful units. Some extremely document-

centric interfaces (e.g. Workscape, [3], Web Forager [5])
permit the spatial arrangement of large numbers of
documents, enabling effective visualizations of the
relationships among them. The application of dynamic
query techniques in a document-centric world enables visual
search paradigms. In document-centric interfaces, users can
almost literally "get their hands on" their documents.

The information-centric approach in Visage simply
represents a natural continuation of these trends. Visage
abandons the primacy of the document wrapper as the
central focus of user interaction in favor of the data element
as the basic currency of the interface. Rather than limiting
the user to files and documents as targets of direct
manipulation, Visage permits direct drag-and-drop
manipulation of data at any level of granularity. A numeric
entry in a table, selected bars from a bar chart, and a
complex presentation graphic are all first-class candidates
for user manipulations, and all follow the same "physics"
of the interface. The object oriented nature of this approach
is clearly is not unique to Visage and indeed was introduced
and explored in Smalltalk and other systems (e.g. 10). Our
work addressed the user interface issues raised in using this
approach throughout an information visualization and
exploration environment.

4. Visage Environment Main Components

The Visage interface environment strives to minimize
the number of fundamentally different kinds of objects that
must be understood by the user. As a first approximation,
Visage may be thought of as having only two basic object
types: elements and frames.

The term elements (more properly called "Visual
Elements") refers to any atomically-manipulable graphical
object in a Visage display. Examples of elements are bars
in a bar chart, the text label of an axis, a point in a scatter
chart, or a numeric value in a spreadsheet-like cell. Each
visual element corresponds to an object in an underlying
database. Note that this relationship is one-to-many: each
element is associated with exactly one database object, but
the same object may be represented by multiple elements.
Some elements are atomic, but others are compound, i.e.,
made up of multiple elements bound together into a single
entity. An example of the latter might be a cluster
composed of a dot representing a city on a map, a text label
naming it, and a gauge telling its population.

In a literal sense, all Visage displays are made up
exclusively of collections of elements arranged to form the
display. For example, the bar chart in Figure 3 is not a
discrete "picture", but rather an arrangement of elements
which can be broken apart by the user and separately
manipulated. As the illustration shows, this makes it easy

for the user to select some bars from the display (either
removing them or--as in the case shown--duplicating them)
and drag them to some other display. This ability to
directly drag small units of data forms the basis of the
information-centric approach to interface design described
above.

Hints of this approach may be found in a few existing
interfaces. For example, recent versions of Microsoft Word
support the ability to drag selected text from one place in
the document to another--thus bypassing the often criticized
invisible clipboard as a mechanism for moving data around
within an application (however text cannot be dragged onto
the desktop or into other applications). The Macintosh
system provides transparent drag-and-drop, which Netscape
uses to enable images to be dragged from web page displays
onto a desktop (though they are immediately hidden within
files). Likewise, several visualization tools support
representing data objects graphically and provide filtering,
painting of linked displays, and related operations
[4,6,8,10]. In Visage, these capabilities are promoted from
special-purpose features to capabilities that can be used
everywhere in the environment. It becomes part of the
"basic physics" of the interface, empowering the user to
directly perform unique actions that might otherwise require
knowledge of numerous specialized interface "features."

Frames, the second basic object type, serve as
pasteboards for elements. Strictly speaking, frames are
themselves elements, but are sufficiently distinct in the
user's model of the interface as to warrant separate
treatment. Like windows in traditional GUI designs, frames
provide a grouping function for related elements as well as a
frame of reference for their arrangement. Unlike windows,
however, frames are lightweight objects, easily created and
destroyed, frequently manipulated by the user, and are
themselves subject to the entire repertoire of direct-
manipulation actions available for other elements
(duplication, drag & drop, dynamic scaling, etc).

Another major function of frames is to serve as anchor
points for scripts. The Visage user interface is highly
scripted. Beyond the processing of basic user events, such
as mouse-dragging and clicking, much of the high-level
behavior of the system is controlled by user-accessible
script rather than hard-coded methods. Although scripts may
be attached to any element, most of the scripts of a typical
interface are associated with frames. In the illustrated
examples, it is the script of the "Bar Chart" frame that
causes data dropped on that frame to be displayed as
horizontal bars of certain lengths and locations. Similarly,
scripts of the map frame cause the same data to be displayed
in iconic form arranged by latitude and longitude. In this
way, scripted frames may be composed to form highly

customized applications environments, tailored to a
particular user's needs.

The scripting environment provides another essential
feature in support of the Visage's data exploration
operations. Although the underlying database being
explored may have many data values directly given, many
other such values typically need to be derived in a very
situation-specific manner. For example, in a transportation
scheduling application, the database may contain attributes
of a commodity such as gross weight and package weight.
The user, however, may require a display of net shipping
weight, which is not directly given. Visage allows the
definition of scripts that compute these "derived attributes."
Once defined, these scripts make available to the user data
indistinguishable from that directly given in a database.
Indeed, the total supply weight attribute in Figure 1 is a
detailed script that reduces much database access and
calculation to a single attribute. It is attached to a Visage
data object representing the class, military unit, and is
invoked when an instance of this class receives a message
to return the value of this attribute. The script traverses
relations between a unit, its subordinates, the supply
quantities they possess and accesses attributes of supply
classes to retrieve their individual weights to be
accumulated.

Finally, scripting is the basis for delivering to the user
the drill-down and roll-up data navigation features described
above. For instance, our logistics application supports a
"regrouping" operation which, in a single step, decomposes
a supplied unit into a long list of its required inventory
items and then regroups them by the supply points that
provides those items. Such operations form the basis for
very powerful incremental data navigation and
summarization which would require complex queries in
conventional database systems. The Visage scripting
language is similar to HyperTalk and contains language
features tuned to data navigation and aggregation functions
(e.g. for stepping across links among objects, iterating over
object sets and accumulating sums of values of quantitative
attributes).

Collections of specialized frames are typically gathered
together to form a coherent, highly-tailored work
environment. Such environments may be augmented by
scripted behaviors that add useful global features to the
environment at large. An example of this is the fact that
the painting of elements in our logistics environment is
globally coordinated across all frames of the interface, thus
greatly enhancing the user's ability to identify related
information across displays. Similarly, dynamic query tools
[1] are included in the environment, permitting the
interactive control of the visual attributes of the elements of
the display according to parametric aspects of the database.

People may add sliders to frames to select a subset of
objects and then drag the subset to other frames to focus on
different attributes. DQ sliders are visual elements with
scripted behavior. Dropping one on a visualization in a
frame causes it to collect all the attributes of data objects
currently displayed in the frame. Users may then select an
attribute from these for performing filtering operations.

Frames and their contents may be freely scaled, either by
direct manipulation or by script. A given frame may be
shrunk to thumbnail size for temporary storage, or expanded
to full-screen during a presentation. This capability enables
the efficient and flexible usage of the available screen real
estate. Scale control is also a useful feature in the creation
of briefing slides.

5. Incorporating Briefing Tools

We are exploring the use of the basic Visage tools to
provide a simple briefing or "slide show" application which
is completely integrated with the rest of the environment.
As analyses are performed, text and graphics can be captured
and saved in special frames called 'slides.' A slide is simply
a frame with special scripts designed to make it easy to
"paste up" other frames and elements for visual
presentations. A user simply "drags and drops" the desired
frames onto a slide frame, where they are scaled
appropriately. Text annotation can be added to the slide
using Visage text elements. Slides created in this way can
be accumulated in a "slide sorter" frame, which has special
scripts making it easy to sequence a presentation by simple
drag operations (similar to popular commercial presentation
packages, like PowerPoint). In the color plate, an outliner,
map, and chart have been dropped in a slide, which has been
augmented with text and dropped into the slide sorter (the
latter illustrated in Figure 5).

Figure 5: Slide sorter frame

The slider sorter has controls for initiating the sequential
display of each slide at full-screen size. Thus, the briefing
function has been seamlessly integrated with those of data
exploration and analysis. Note that elements on the slide do
not lose their separate identity--they are still fully-
functional interface objects that can be dragged among
displays, used for painting, dynamic query, drill-down and
roll-up operations right in the briefing.

The ability to perform these information analysis
operations during a presentation raises some interesting

opportunities and challenges. First, it provides the ability
to answer questions by modifying the graphic. By copying
slides in the briefing, it is possible to both preserve the
original presentation as well as keep a record of changes
created in response to questions. Another challenge which
we have not addressed is the dynamic modification of
briefing slides to reflect changes in the underlying database.
This problem has been addressed partially by current
approaches to application embedding and linking. We are
currently implementing constraint mechanisms whereby
changes can either be propagated or blocked from affecting
briefing slides.

6. SAGE Automatic Graphics Generation

The impetus for the Visage project originated with a
project on a related system called SAGE [12], whose goal
was to provide ways to generate data visualizations
automatically. SAGE is a knowledge-based presentation
system that designs displays of combinations of diverse
information (e.g. quantitative, relational, temporal,
hierarchical, categorical, geographic). We have explored the
use of SAGE to automatically assume the burden of
visualizing information for other applications and for
computer-supported graphic design. In the latter case, users
interactively specify some or all of the graphical choices
that SAGE must consider in generating displays of data.
They do this by creating rough sketches of the graphics
they want using a draw-like interface (called SageBrush) or
by using a portfolio interface to browse previously created
graphics to find some relevant to current needs (called
SageBook).

SAGE's inputs include sets of data, a characterization of
the properties of the data and the tasks that the graphics
should be designed to support, and an optional set of design
specifications, expressing a user's preferences for how the
data set should be visualized. SAGE's output consists of
one or more coordinated sets of 2D information graphics
that use a variety of techniques to integrate multiple data
attributes within a single display. SAGE integrates
multiple attributes by representing them as different
properties of the same set of graphical objects (e.g. color-
coded bars), by assembling graphical objects into clusters
that function as units to express data (e.g. gauges and text
within nodes of networks), and by aligning multiple charts
and tables with respect to a common axis.

The SAGE work has been successful for creating
hundreds of integrative graphics. Our previous work
developed an architecture within which basic data
manipulation operations can be applied to coordinated
combinations of SAGE graphics (e.g. painting, dynamic
queries, and aggregation). However, to be useful in data-
intensive environments, it was necessary to develop the

kinds of information-centric data manipulation approaches
that are described here, especially the ability to: transfer
objects across displays, turn displays into briefing
materials, coordinate painting with application interfaces,
and provide drill-down and roll-up operations for every
object.

In order to achieve this, we separated SAGE’s
knowledge-based design engine from the process of
rendering its graphics. Thus SAGE has become a
“visualization design server”, which provides specifications
of its designs to be rendered in Visage. The Visage renderer
interprets SAGE designs, renders them in Visage frames,
and populates them with visual elements whose appearance
is specified by the SAGE design. Once rendered in this
fashion, visualizations are subject to all the Visage
operations.

Integrating the two systems combines the strengths of
Visage’s information-centric manipulation operations with
SAGE's graphics repertoire. We have also successfully
added scripts to SAGE visualizations to perform special data
manipulation operations and user interface functions for
applications. This appears to be a promising combination
of visualization creation technology and user interface
development tools.

A parallel research and development effort is continuing
to incorporate new design knowledge for creating 3D,
animation and other visualization techniques in SAGE -
especially for large data sets. As these are added to SAGE,
we will explore the implications of applying current
operations within the Visage environment to these new
techniques.

Acknowledgments
The authors would like to acknowledge the

contributions of Noah B. Guyot, Hugo Cheng, Kenichiro
Tanaka, Michelle Vincow, Joseph Mattis. This work was
supported by contracts from ARPA and Army Research
Laboratory.

References

1. C. Ahlberg and B. Shneiderman. Visual information
seeking: tight coupling of dynamic query filters with
starfield displays. Proceedings CHI '94 Human Factors in
Computing Systems, ACM, April 1994, pp. 313-317.

2. C. Ahlberg and E. Wistrand. IVEE: An environment for
automatic creation of dynamic queries applications.
Conference Companion, CHI '95 Human Factors in
Computing Systems, ACM, May 1995, pp. 15-16.

3. J. M. Ballay, Designing Workscape: An
Interdisciplinary Experience. Proceedings CHI '94
Human Factors in Computing Systems, ACM, April
1994, pp. 10-15.

4. R. A. Becker and W. S. Cleveland. Brushing
Scatterplots. Technometrics, May 1987, vol. 29, no. 2 ,
pp. 127-142.

5. S. K. Card, G. Robertson, and W. York. The WebBook ad
the Web Forager: An information workspace for the
world-wide web. Proceedings CHI '96 Human Factors in
Computing Systems, ACM, April 1996, pp. 111-117.

6. S. G. Eick and G. J. Wills. Navigating large networks
with hierarchies. Proceedings Visualization'93, IEEE,
October 1993.

7. K. Fishkin and M. C. Stone. Enhanced dynamic queries
via movable filters. Proceedings CHI '95 Human Factors
in Computing Systems, ACM, May 1995, pp. 415-420.

8. J. Goldstein, S. F. Roth, J. Kolojejchick, and J. Mattis.
A framework for knowledge-based, interactive data
exploration. Journal of Visual Language and Computing,
no. 5, 1994, pp. 339-363.

9. B. Johnson and B. Schneiderman. Treemaps: A space-
filling approach to the visualization of hierarchical
information structures. Proceedings Visualization’91,
IEEE, October, 1991, pp. 284-291.

10. J. A. Mcdonald. Painting multiple views of complex
objects. ECOOP/OOPSLA '90 Proceedings, Oct. 1990,
pp. 245-257.

11. R. Rao and S. K. Card. The table lens: Merging graphical
and symbolic representations in an interactive
focus+context visualization for tabular information.
Proceedings CHI '94 Human Factors in Computing
Systems, ACM, April 1994, pp. 318-322.

12. S. F. Roth, J. Kolojejchick, J. Mattis, and J. Goldstein.
Interactive graphic design using automatic presentation
knowledge. Proceedings CHI'94 Human Factors in
computing Systems, ACM, April 1994, pp. 112-117.

13. L. Tessler. The Smalltalk Environment, Byte Magazine,
6, 8, Aug 1981, pp. 90-147.

